Year 9 Computer Science			
1. E-safety and Social Engineering	 Explain the term E-safety and describe how to remain safe when using the internet Describe a range of preventative measures we can take to avoid risks online Define Social Engineering and explain the methods of Phishing, Pharming, Blagging and Shouldering 	 Define E-safety and discuss the risks to individuals and organisations at home, school and work Identify and discuss the pros and cons of a wide range of preventative measures individuals and organisations can take to minimise and avoid risks Explain the causes of Social Engineering growth and measures individuals and organisations take to reduce and prevent risks 	 Discuss a range of behaviours involved in E-safety risks, trolling, cyberbullying, sexting, ID theft Describe the factors driving the growth of social engineering and the key characteristics used to identify manipulative behaviour online. Understand and be able to discuss the current legal framework and legislation regarding use of computers online, including GDPR, Misuse of Computers and Copytight
2. Representing Data in Computer Systems	 Identify the input devices involved in converting analogue inputs to digital data Define binary and be able to convert four digit binary value to denary Explain how pixels are used to create digital images and create a two bitmap image Describe the key features of a sound wave 	 Explain the term analogue and why computer systems need to use digital data to store and use information and instructions Be able to convert and add binary values and convert four digit binary values to hexadecimal Explain how bit depth defines the amount of colour a pixel may represent and calculate the number of colours for a given but depth Describe how amplitude and frequency affect the characteristics of a sound clip 	 Describe how analogue data is converted to digital data and the relationship between this and the architecture of a computer system Convert binary, hexadecimal and denary values, explaining the relationship between the different number systems Explain how and why programmers use hexadecimal values to represent data and convert RGB and Binary values to hex. Explain how sampling frequency and sampling resolution affect the quality of a sound file Complete simple calculations of digital file sizes
3. Algorithms, decomposition and Abstraction	 Define the term algorithm and provide example of everyday algorithms Create a simple flow chart algorithm Define and give examples of the use of abstraction Explain decomposition and how we can use it to represent systems and organisations 	 Explain the use of algorithms in home, school and the business world Create flowchart algorithms using appropriate shapes for input / output, process and decisions Use abstraction to describe the general rather than specific details of a system / object Define and use decomposition to break down a system into its functions 	 Explain why algorithms are used to plan solutions to programming / system problems Use flowcharts and simple pseudocode to set out the sequence of instructions to solve a problem Understand and explain the relationship in programming between visual, high level, assembly and machine programming Explain the advantages of using decomposition, functions and subroutines in programming
4. History of Computing, Hardware and Software	 Define a computer system Describe a key object or device involved in the evolution of modern computers Explain the term hardware and identify input and output devices Describe how different types of software are used by computer systems and users of computer systems 	 Explain the architecture of a modern computer system Describe the key objects and individuals involved in the development of modern computers Describe the difference between internal and external hardware and the role of key components Explain the difference between system and application software using generic examples 	 Explain key events, people and drivers in the development of computer systems from analogue to post Von Neumann Architecture devices Explain the role and relationship between input, output, process and storage devices Describe the role of operating systems, utilities, drivers and the their relationship with hardware
5. High Level Programming	• TBC	• TBC	• TBC